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Dynamical systems that operate near the onset of coupling-induced oscillations can exhibit enhanced sen-
sitivity to external perturbations under suitable operating parameters. This cooperative behavior and the atten-
dant enhancement in the system response �quantified here via a signal-to-noise ratio at the fundamental of the
coupling-induced oscillation frequency� are investigated in this work. As a prototype, we study an array of dc
superconducting quantum interference device �SQUID� rings locally coupled, unidirectionally as well as bidi-
rectionally, in a ring configuration; it is well known that each individual SQUID can be biased through a
saddle-node bifurcation to oscillatory behavior. We show that biasing the array near the bifurcation point of
coupling-induced oscillations can lead to a significant performance enhancement.
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I. INTRODUCTION

A generic feature of many nonlinear dynamical systems is
high sensitivity to small external perturbations, especially
when they are “tuned” near the onset of a bifurcation. This
feature appears to be further enhanced when the system con-
sists of a certain number of individual units tightly coupled
in some fashion. These critical observations have led us to
develop, through several theoretical and experimental works
�1–4�, the basic principles for a general mechanism for signal
detection and amplification. We have focused our efforts,
so far, on a large class of nonlinear devices whose behavior
is governed by overdamped bistable dynamics of the form
ẋ=−�U�x�, where U�x� is a potential energy function. In the
absence of an external forcing term, the state point x�t� will
rapidly relax to one of two stable attractors, which corre-
spond to the minima of U�x�. This behavior is, of course,
universal in overdamped dynamical systems. When a certain
number of units are coupled to one another, however, the
coupling alone can lead to self-sustained oscillations, whose
stability properties depend, among other things, on the cou-
pling topology, i.e., which units are coupled with each other.
More importantly, the coupling scheme can lead, under cer-
tain conditions, to significant performance enhancements in
terms of sensitivity and signal output response, relative to
background noise.

In this work, we investigate further the model-
independent idea of coupling-induced oscillations for signal
detection through the most sensitive of all magnetic sensors,
the dc SQUID �superconducting quantum interference de-
vice� magnetometer �5�. Our goal is to study the dynamics of

the coupling-induced oscillations, i.e., determine their exis-
tence criteria and stability properties, as well as the gain in
sensitivity of an array of locally coupled dc SQUID rings.
The work complements and extends the recent theoretical
analysis of a network of globally coupled dc SQUID rings
�6� to the more complicated case of local coupling. In addi-
tion, we lay out the requirements for future experimental
work. The resulting array device could be used in a wide
range of magnetic field detection applications that require
high levels of sensitivity such as biomedical tracking of mag-
netic particles �e.g., MRI machines commonly used for diag-
nosing multiple sclerosis, brain tumors, and spinal infec-
tions�, geological equipment �e.g., NASA explorers, and
remote sensing equipment for oil and mineral prospecting�,
homeland defense �e.g., detection of explosives, and building
security applications� �7–19�, as well as specialized applica-
tions such as superconducting quantum interference filters
�SQIFs� �20�.

The paper is organized as follows. In Sec. II we present a
brief background of basic SQUID theory; this section is in-
tended for readers not familiar with the subject. In Sec. III
we derive the model equations for an array of N dc SQUIDs
unidirectionally coupled in a ring configuration. We perform
a computational bifurcation analysis to determine the onset
of oscillations, derive an analytic expression for their fre-
quency via center manifold theory, and investigate the gains
in signal output relative to background noise. In Sec. IV we
extend the analysis to a bidirectionally coupled ring.

II. BACKGROUND: THE dc SQUID

The most sensitive of all magnetic sensors is the super-
conducting quantum interference device �SQUID�. Devel-
oped about 1962, a SQUID consists of tiny loops of super-
conductors into which one incorporates Josephson junctions;
these are made up of two superconductors separated by an
insulating layer so thin that electrons can tunnel through. A
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radio frequency �rf� SQUID is made up of one Josephson
junction mounted on a superconducting ring. An oscillating
current is applied to an external circuit, whose voltage
changes as an effect of the interaction between it and the
ring. The magnetic flux is then measured. A direct current
�dc� SQUID consists of two Josephson junctions employed
in parallel so that electrons tunneling through the junctions
demonstrate quantum interference, dependent upon the
strength of the magnetic field within a loop. Today, SQUIDs
boast of noise floors as low as 1–30 fT/�Hz. We now pro-
vide an overview of the dynamics of a single dc SQUID,
since this forms the “elemental unit” of the coupled array to
be considered throughout this work. A more comprehensive
description can be found in Ref. �5�.

As already stated, the dc SQUID consists of two Joseph-
son junctions inserted into a superconducting loop �5� �see
Fig. 1�; we assume, for convenience, that the insertion is
symmetric. Conventionally, the voltage measured across the
Josephson junctions is taken as the SQUID “output.” It is,

however, also convenient to take the circulating current Is

�experimentally measured via the associated “shielding
flux”� as the output variable of interest. Equation �7� and the
discussion thereafter describe how to measure, numerically,
the circulating current. Such a configuration setup was used,
for example, in our earlier studies of the “stochastic reso-
nance” effect in dc SQUIDs operating in the hysteretic re-
gime �21,22�. However, much higher output signal strengths
and response signal-to-noise ratios �SNRs� were discovered
by using dc bias currents large enough to take the device
beyond the hysteretic regime into the regime of oscillatory
solutions. These higher input-output gains result from the
rapid change of Is with small changes in the �externally ap-
plied� magnetic flux �e close to where the dynamics change
from static to oscillatory.

In the presence of an external magnetic flux �e, one ob-
tains a loop flux consisting of the �geometrical� component
�e together with a contribution arising from the induced cir-

FIG. 1. �Color online� Schematic diagram of a dc SQUID magnetometer. Courtesy of www.phy-astr.gsu.edu.
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culating or shielding current Is that tends to screen the ap-
plied flux:

� = �e + LIs, �1�

L being the loop inductance. The Josephson currents in each
arm of the “interferometer” are I0 sin �1 and I0 sin �2, with
the junctions assumed to be identical with critical currents I0,
and with �1,2 being the quantum phases. The wave function
must remain single-valued around the SQUID loop, leading
to the phase continuity condition

�2 − �1 = 2�n − 2��/�0, �2�

n being an integer, and �0�h /2e the flux quantum. Com-
bining Eqs. �1� and �2� and setting n=0, we find for the
circulating current Is

�
Is

I0
= �1 − �2 − 2�

�e

�0
, �3�

where ��2�LI0 /�0 is the nonlinearity parameter. In the
absence of external magnetic flux signals we can use the
resistively shunted Josephson junction �RSJ� model to write
down equations for the currents in the two arms of the
SQUID via a lumped circuit representation �5�; expressed via

the Josephson relations �̇i=2eVi /� linking the voltage and
the quantum phase difference across the junction i, these
equations take the form

��̇1 =
Ib

2
− Is − I0 sin �1, ��̇2 =

Ib

2
+ Is − I0 sin �2, �4�

where ��� / �2eR�, R being the normal state resistance of the
junctions. The dc bias current Ib is applied symmetrically to
the loop. In experiments �21�, the bias current and applied
flux are, usually, externally controllable. This is a critical
point since, as will become evident below, it permits us to
manipulate the shape of the two-dimensional �2D� potential
function that characterizes the SQUID dynamics and,
thereby, the input-output transfer characteristic �TC� that
governs the response �note that the solutions of Eq. �4� can
be oscillatory, even in the absence of external inputs�. Res-

caling time by � / I0, one can write the above in the form �̇i

=− �U
��i

with the 2D potential function defined as

U��1,�2� = − cos �1 − cos �2 − J��1 + �2�

+ �2��−1��1 − �2 − 2��ex�2, �5�

where we introduce the dimensionless bias current J
� Ib / �2I0� and normalized applied flux �ex��e /�0.

The SQUID’s Josephson junctions are always in a zero-
voltage state when the potential �5� has stable minima; it is
readily apparent that the symmetry of the potential and the
depth of the minima are controlled by the adjustable param-
eters J and �ex. This configuration �including the problem of
thermal activation out of the stable states of the potential�
has been discussed in the literature �23�. After a brief tran-
sient, the phase angles �1,2 achieve constant steady-state val-

ues and one obtains the conditions for the minima via �̇1,2
=0. This leads to the current equations

Ib = I0�sin �1 + sin �2�, 2Is = I0�sin �2 − sin �1� . �6�

Of course, these equations may also be written down by
applying Kirchoff’s laws directly to the lumped circuit rep-
resentation of the SQUID. Using the phase continuity rela-
tion, we are finally able to write down a transcendental equa-
tion for the circulating current Is:

Is

I0
= − sin���ex +

�Is

2I0
	 � cos
sin−1�J +

Is

I0
	 + ��ex +

�Is

2I0
� .

�7�

Equation �7� may be solved numerically for the circulating
current; the ensuing TC is periodic in the applied flux �ex
and possibly hysteretic, with the hysteresis loop width con-
trolled by the bias current J. For J=0 one obtains hysteresis
for any nonlinearity �; for 0�J	1, hysteresis occurs over
some range of �. It is most important to note that Eqs. �6�
and therefore Eq. �7� are valid only when the potential has
stable minima. In this regime, the externally applied bias
current is matched by the sum of the junction supercurrents.
When this balance is exceeded, a finite voltage V �corre-
sponding to a normal loop current V /R� appears across the
device. The maximum applied current �before the device en-
ters its “voltage state”� is clearly 2I0 in the absence of an
applied external flux. However, in the presence of the exter-
nal flux, one must compute the critical applied current at
which the voltage state appears. In this regime, one obtains
oscillatory solutions for the phases �i �modulo 2�� and the
circulating current Is, reminiscent of self-excited or relax-
ation oscillators that are encountered in systems with nega-
tive damping �24�. For the system at hand, this behavior may
be traced to the description in terms of the two coupled first-
order differential equations �4�, together with a nonzero ap-
plied current J. In fact, it may be shown that, only in the
zero-voltage regime �where the potential has stable minima�,
the SQUID dynamics �4� may be reduced to the 1D form, in
terms of the normalized flux variable x:

�sẋ = − x − xe −
�

2�
sin �x cos Z , �8�

where we set �s= ��
2I0

and Z=�x+sin−1�J+ 2�
� �x−xe��. Equat-

ing the right hand side of Eq. �8� to zero and solving �nu-
merically� for the x vs xe TC yields a curve identical to that
obtained from the transcendental form �7�, after we express
Is in terms of x. Note that, in this regime, the potential �5�
can readily be transformed into a single-variable potential
U�x�, whose gradient yields �up to a multiplicative constant�
the negative of the right hand side of Eq. �8�; this, of course,
is to be expected.

In this paper, we will be concerned, mainly, with the
�voltage� state of stable periodic voltage oscillations, which
occurs past a critical value Jc of the bias current. The oscil-
lations are created via a global saddle-node bifurcation, in
which the stable fixed �node� point collides with, and gets
destroyed by, a saddle fixed point. To calculate the frequency
of the spontaneous oscillations, a center manifold reduction
of the nonlinear dynamics, represented by the coupled phase
equations �4�, near the singular point J=Jc has been per-
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formed �25�. The reduction effectively separates the slow
dynamics in the vicinity of the center manifold from the fast
dynamics of the complement space, which, after all, it even-
tually approaches that of the center manifold. More impor-
tantly, the reduction captures the frequency of the ensuing
oscillations through the following analytical expression:


 =
1

2�
�F� , �9�

where F= �J−Jc�cos �, tan 2�=−� sin �0 sin 0, ��0 ,0� is
the equilibrium point �within the superconducting regime� of
the nonlinear equations �4� expressed in the sum and differ-
ence variables �= ��1−�2� /2, = ��1+�2� /2, and � is a pa-
rameter, introduced by the center manifold reduction, that
depends on the equilibrium point ��0 ,0�. It should be noted
that the above expression �9� is most accurate very close to
the critical point �25�.

A. Coupled dc SQUID rings: A preamble

Coupled noisy dynamic systems have been extensively
studied from the standpoint of spatiotemporal pattern forma-
tion �26� as well as the energetics associated with soliton
propagation �27� in large arrays. The paper by Shiino �28� on
a self-consistent mean-field description of coupled over-
damped bistable elements remains one of the seminal works
in this field, having spawned a plethora of papers on the
dynamics of globally coupled noisy nonlinear dynamic ele-
ments. Synchronization in coupled systems has also re-
mained a topic of considerable interest �29� with a significant
number �too numerous to cite individually� of papers in the
literature. During the 1990s, the advent of array enhanced
stochastic resonance and its variations bred a rash of papers
�30� dealing with the intriguing possibility of significantly
enhanced system response �characterized by output SNRs or
information-theoretic measures for nonsinusoidal input sig-
nals�.

Some preliminary results on globally coupled dc SQUIDs
in the presence of noise were first published by Inchiosa and
Bulsara �31�. They presented a very careful discussion on the
potential enhancement of the SNR response to a time-
sinusoidal subthreshold target signal when one summed the
response from each SQUID in an uncoupled network, point-
ing out that the summing circuit would, in fact, introduce a
de facto coupling of the SQUIDs. The effects of correlated
and uncorrelated noise were also examined, and precise
bounds on the amount of enhancement laid out. Among their
results was the fact that very strong coupling could eliminate
any SNR enhancement and an optimal value of the coupling
coefficient existed at which the maximal SNR enhancement
occurred.

In Ref. �6� we considered a globally coupled network of
dc SQUID rings. The onset of the running solutions was
analyzed for the deterministic case and the average screening
current computed from a Fokker-Planck description of the
system in the presence of �small� noise sources in each ring.
In addition, the effects of introducing a “probe” signal �taken
as a deterministic sinusoid� in the flux or bias current vari-
ables were analyzed. In practice, this signal could be used to

determine the underlying frequency of the SQUID oscilla-
tions by sweeping its frequency and seeking the resonance
when it matches the internal oscillation frequency. At this
resonance, one observes a significant depression in the noise
floor of the response power spectral density �psd� at all fre-
quencies with the most pronounced effect occurring at the
fundamental. This effect, which has also been quantified in a
single dc SQUID �2�, can be exploited in SQUID networks
to detect a very weak time-periodic external signal, by
sweeping the internal oscillation frequency �through an ad-
justment of, say, the bias currents� until it resonates with the
target signal frequency.

In recent work, we have considered the idea of unidirec-
tional coupling in arrays �possibly overdamped� of nonlinear
dynamic elements with cyclic boundary conditions �3,32,33�.
The results show that coupling N�2 such elements can lead
to oscillatory behavior past a critical point characterized by a
critical value of the coupling constant. The “oscillations” in
this case correspond to transitions across the potential energy
barriers of the state point of each element with a transition
rate �oscillation frequency� that can be exactly computed for
the deterministic case and exhibits a characteristic square-
root scaling with the “bifurcation distance” �the separation of
the coupling constant from its critical value�. These oscilla-
tions occur even in the absence of any external forcing, as
long as at least one of the initial states of the elements is
different from the rest; in practice, one always must provide
power to assorted circuit elements �most notably the cou-
pling circuits� so that no fundamental laws are violated. The
effects of very small target signals �dc �3� and time-
sinusoidal �32�� on the oscillation characteristics can be ex-
ploited to detect and quantify the unknown target signals.
These phenomena are now being exploited in a new class of
room temperature magnetic �4� and electric field �33� detec-
tors. The effects of noise in these systems are, only recently,
becoming clear, with significant amplification �via an array
enhanced coherence resonance effect� possible with increas-
ing N �34�, as well as the generation of spatiotemporal pat-
terns together with solitonlike disturbances and the �noise-
induced� creation or annihilation of domain walls, in large
arrays �35�.

dc SQUIDs, coupled in a topolgy that bears some simi-
larities to the unidirectional coupling discussed in the pre-
ceding paragraph, are being developed as ultrasensitive, very
wide-band signal filters. These so-called superconducting
quantum interference filters �SQIFs� �20� are expected to find
significant applications in applications like biomedical imag-
ing, magnetic signal detection in specialized applications,
and antennas. However, the dynamics �together with the ef-
fects of background noise� of these �locally coupled� arrays
have not been worked out in great detail. In what follows, we
take the first steps towards this goal, considering cyclically
coupled dc SQUID rings with local �unidirectional as well as
bidirectional� interelement coupling.

III. UNIDIRECTIONALLY COUPLED dc-SQUID RINGS

A. Model equations

We consider an array of N dc SQUID rings arranged in a
ring configuration, unidirectionally coupled, so that the flux
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�k in each individual SQUID k depends on one of its nearest
neighbors, that is

�k = �e + LkIk + MIk+1, k = 1, . . . ,N,IN+1 = I1 �10�

where M is the coupling strength. This configuration is simi-
lar to the one we used in the study of coupled-core fluxgate
magnetometers �3�, except that now the internal dynamics of
each individual unit involves the phase differences of the
Josephson junctions instead of a macroscopic magnetic flux
variable �in the coupled-core fluxgate magnetometer�. The
case of bidirectional coupling will be discussed in Sec. IV.
Then, this paper is expected to complement and extend our
previous work �6�. Substituting �k into Eq. �2� leads to the
following system of differential equations for the array dy-
namics:

�k

I0k
�̇kj = Jk + �− 1� j Ik

I0k
− sin��kj� ,

�k
Ik

I0k
= �k1 − �k2 − 2�xe − 2��Ik+1, �11�

where k=1, . . . ,N mod N, j=1,2, �k=2�LkI0k /�0, and � is
the coupling strength normalized by the flux quantum, i.e.,
�=M /�0. Lk is the loop inductance of the kth element, Ik is
its screening current �normalized to the critical current I0k�,
and Jk is the loop bias current. The implications of this cou-
pling scheme, from an experimental point of view, will be
discussed in more detail in the final section of this manu-
script.

To solve for Ik we set up an iterative method as follows.
We write the second equation in Eq. �11� in matrix form
�A+B�I=�, where

A = �
�1

I01
0 0 . . . 0

0
�2

I02
0 . . . 0

] � ]

0 0 0 . . .
�N

I0N

 ,

B = 2���
0 1 0 . . . 0

0 0 1 . . . 0

] � ]

1 0 0 . . . 0
 ,

I = �
I1

I2

]

IN

 ,

� = �
�11 − �12 − 2�xe

�21 − �22 − 2�xe

]

�N1 − �N2 − 2�xe

 .

Direct iterations of AIm+1=�−BIm yield

I = C�, C = �Id + A−1B�−1A−1, �12�

where Id is the identity matrix of dimension N and C is an
N�N matrix with the following structure:

C =
1

��1

I01

�2

I02
. . .

�N

I0N
	 − �N�

�2

I02

�3

I03
. . .

�N

I0N
−

�3

I03

�4

I04
. . .

�N

I0N
�

�4

I04

�5

I05
. . .

�N

I0N
�2 . . . �− ��N−1

�− ��N−1 �1

I01

�3

I03
. . .

�N

I0N
−

�1

I01

�4

I04
. . .

�N

I0N
� . . .

�1

I01

] � ]

−
�2

I02

�3

I03
. . .

�N−1

I0,N−1
�

�N−1

I0,N−1
�2 �− ��N−1 . . .

�1

I01

�2

I02
. . .

�N−1

I0,N−1

 , �13�

in which �=2��. We observe that the local coupling scheme
�10� facilitates the calculation of a closed form solution for
C, as opposed to the case of global coupling where such
solution does not exist �6�. Furthermore, the structure of C
indicates that the phase dynamics of each individual SQUID
depend on the phases of every other SQUID in the ring.
Interestingly, the phases become globally coupled to one an-
other even though the circulating currents are only locally
coupled. We now write the phase dynamics of the k SQUID
using the closed form for C as follows:

�k

I0k
�̇kj = Jk + �− 1� j�

i=1

N
Cki

I0k
��i1 − �i2 − 2�xe� − sin��kj� ,

�14�
where k=1, . . . ,N mod N and j=1,2.

B. Onset of oscillations: Bifurcation analysis

In what follows we consider SQUIDs with identical junc-
tions, i.e., the same critical current I0k= I0, the same normal

COOPERATIVE DYNAMICS IN COUPLED NOISY¼ PHYSICAL REVIEW E 74, 021122 �2006�

021122-5



resistance Rk=R0, and the same bias current Jk. All analytic
calculations are carried out assuming different values of �,
which may arise in experiments due to differences in loop
inductances Lk, but most computer simulations are per-
formed with identical � values. Under these conditions, the
coupled SQUID system generically exhibits two patterns of
behavior: a steady-state solution �SS�, in which the long-term
dynamics of each individual SQUID settles into an equilib-
rium state; and a running solution �RS�, in which the flux in
each SQUID oscillates, periodically, as a function of time.
The oscillations emerge via a saddle-node bifurcation, just as
in the case of a single SQUID. Figure 2 is a two-parameter
bifurcation diagram which depicts, in parameter space
�J ,�e�, the basin boundary of existence of both types of
solutions, steady states and periodic oscillations, for a ring of
N=3 SQUIDs coupled unidirectionally. The symmetries in
the diagram are a direct consequence of reflectional symme-
tries in the model �14� and of the periodicity of the phase
variables. Running solutions exist only inside triangular re-
gions, one of which is represented in the shaded area. Within

that triangular region, black bands correspond to parameter
values where typical trajectories, with random initial condi-
tions, show long-transient behavior. Likewise, white bands
denote trajectories with short-transient behavior. On the
boundary lines that extend, symmetrically, to the left of the
tip of the triangular region, there are no oscillations, only
long transients which eventually settle into a �constant�
steady-state solution. The structure of this basin boundary of
attraction is similar to those of the globally coupled networks
of SQUIDs considered by Acebron et al. �6�. The actual on-
set of oscillations, in terms of the critical values for the bias
current J and the external flux xe, can also be calculated
analytically following the procedure described in Ref. �6�,
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x 1−
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FIG. 3. Wave forms of flux oscillations in a ring of N=3
SQUIDs coupled unidirectionally with various values of bias cur-
rent J. In each case, flux oscillations are completely synchronized
with one another, i.e., the same amplitude and the same phase.
Close to their onset of existence �tip of triangular region in Fig. 2�,
the wave forms show a relaxationlike structure. As the bias current
increases, the wave forms gradually approach a more sinusoidal
shape. Parameters are xe=0.5, �k=0.8, and �=0.01.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

J

x e λ = 0.1

λ = 0.05

λ = 0

FIG. 4. Two-parameter continuation of running solutions and
steady states in a three-SQUID ring system, unidirectionally
coupled with various values of coupling strength �. Increasing the
coupling strength has the effect of shifting the critical bias current
Jc horizontally. Parameters are �k=0.8.

FIG. 2. �Top� Two-parameter bifurcation diagram describing the
boundary of existence of steady-state solutions �SS� and of periodic
solutions �RS� for a ring of three SQUIDs coupled unidirectionally.
�Bottom� In the gray-shaded area of the plot, periodic solutions
exist only inside the triangular region. In that triangular region,
black �white� bands denote trajectories with long-term �short-term�
transient behavior. Outside of the triangular region trajectories con-
verge to a steady-state solution. Similar behavior is observed in
equivalent areas of the two-parameter space shown in the top of this
figure. Parameters are �=0.01, �k=0.8. Flux oscillations within the
RS regime are completely synchronized with one another, i.e., the
same amplitude and the same phase.

PALACIOS et al. PHYSICAL REVIEW E 74, 021122 �2006�

021122-6



except that the matrix C of Eq. �13� must now be used.
Similar basins of attraction are found for larger rings, includ-
ing those with odd and even values of N.

Within the RS regime of Fig. 2, all flux oscillations are
completely synchronized with one other, i.e., they all exhibit
the same amplitude and the same phase. The wave form
changes, however, with different values of the bias current J.
For bias current values close to the onset of the oscillations,
in particular, the flux variations have a typical relaxation os-
cillation shape. But as J increases, the wave form gradually
approaches a more sinusoidal shape, as shown in Fig. 3.
Observe also that the frequency of the oscillations increases
as J increases. Each individual flux variable was calculated
using the formula xk= ��k1−�k2� /2�. Increasing the coupling
strength in the ring does not destroy, in general, the structure
of the basin boundaries of attractions of the running solutions
and of the steady states; the main effect is, however, to shift,
horizontally, the onset point �Jc ,xe=0.5� towards the right, as
is shown in Fig. 4. There is, however, a maximum value of
coupling strength �max, beyond which all oscillations cease to
exist. To investigate what that maximum value of coupling
strength is, we now fix the external flux xe and track the J
component of the boundary of the triangular region that
bounds the running solution �Fig. 4�, as a function of cou-
pling strength. The resulting bifurcation diagram is shown in
Fig. 5 for three fixed values of external flux, xe=0.05, xe
=0.3, and xe=0.5. The diagram shows that, for any particular
fixed value of xe, oscillations occur for values of �� ,J� that
lie above the curve associated with that same value of xe.
More importantly, the diagram confirms that, indeed, there is
a maximum coupling strength �value of � farthest to the right
along the bifurcation curves� beyond which all oscillations
disappear and the system quickly settles into a steady state.
However, for values of � significantly larger than �max the

system exhibits several complex transitions, via Hopf bifur-
cations, to additional dynamic states such as quasiperiodic
oscillations with various frequencies of oscillation. The re-
gion of existence and stability of these new dynamic states is
very interesting indeed but we refer their analysis for future
work.

In order to find an analytical expression for �max, we first
write the matrix C in powers of �, as is shown below:

C = �
1

�1
I0 −

1

�1�2
I0

2� 0 . . . 0

0
1

�2
I0 −

1

�2�3
I0

2� . . . 0

] � ]

−
1

�1�N
I0

2� 0 0 . . .
1

�N
I0

 + O��2� .

Then we rescale time by � / I0, so that the phase dynamics
takes the new form

�̇kj = J +
�− 1� j

�k
��k1 − �k2 − 2�xe − 2��

I0

�k+1
��k+1,1 − �k+1,2

− 2�xe�	 − sin��kj� + O��2� , �15�

where k=1, . . . ,N mod N and j=1,2. Observe that now the

phase dynamics of each individual SQUID k depends only
on that of its nearest neighbor k+1, in a manner that is con-
sistent with the unidirectional coupling scheme. We will also
use this new form of the phase dynamics later when we
calculate an analytic expression for the frequency response
of the oscillations. Returning to the case of �max, we set xe
=0 in Eq. �15� for simplicity, since �max is the same for any
value of xe and assume all SQUIDs to be identical, i.e., �k
=�. At �max, all phases variables are constant, so the system
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FIG. 5. Two-parameter continuation, in terms of bias current
and coupling strength, of running solutions in a three-SQUID ring
system, unidirectionally coupled. For a fixed value of xe, oscilla-
tions occur for values of �� ,J� that lie above the curve with that
same value of xe. The maximum coupling strength that permits
oscillations is the value of � farthest to the right �vertical line� along
the bifurcation curves. Parameters are �k=0.8.
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is in an equilibrium, i.e., �̇k1= �̇k2=0, which leads to the fol-
lowing equation:

2

�
��k1 − �k2 − 2�xe −

2��

�
��k+1,1 − �k+1,2 − 2�xe�	 + sin �k1

− sin �k2 = 0. �16�

Furthermore, as �→�max
− the coupled system quickly con-

verges to a complete synchronization state in which all phase
variables are in-phase with one another, i.e., �k1=�k+1,1, �k2
=�k+1,2, and �k1=�k2. Substituting these relations into Eq.
�16� yields

2

�
�− 2�xe +

�2��2xe�

�
	 = 0.

Simplifying this last equation shows that � is independent
of xe, while solving for � we obtain

�max
u =

�

2�
, �17�

where the superscript u indicates that the ring is unidirection-
ally coupled. We note that this result holds for arbitrary N.
From a physical point of view, the fact that �max is indepen-
dent of xe can be attributed to the robustness of the coupling-
induced oscillations, i.e., a perturbation of the system by an
external flux does not change the limit-point bifurcation of
the critical coupling where oscillations commence �or stop�.
In Fig. 6 we compare the analytical value of �max produced
by Eq. �17� against numerical calculations. Both results, ana-
lytical and numerical, show the linear dependence of the
coupling strength on the parameter �, and are in very good
agreement with one another.

C. Frequency dependence

To calculate the actual frequency of the ensuing oscilla-
tions, we consider the dynamics of the ring system near the
bifurcation point J=Jc, which is now assumed to be identical
for all SQUIDs. In order to facilitate further calculations, we
rewrite Eq. �15� in terms of the difference and sum variables
�k= ��k1−�k2� /2 and k= ��k1+�k2� /2, leading to

�̇k = −
1

�k
�2�k − 2�xe� + 2��

I0

�k�k+1
�2�k+1 − 2�xe�

− cos k sin �k

̇k = J − cos �k sin k. �18�

Let ��k0 ,k0� denote the fixed point of each individual, un-
coupled, SQUID. Also let xk=�k−�k0, yk=k−k0. A Taylor
series expansion of Eq. �18� about J−Jc, up to third order,
yields

ẋk = − � 2

�k
+ Ak	xk + Bkyk +

�I0

�k�k+1
�2�k+1,0 − 2�xe�

+
2�I0

�k�k+1
xk+1 + Ckxk

2 + 2Dkxkyk + Ckyk
2,

ẏk = �J − Jc� − Akyk + Bkxk + Dkyk
2 + 2Ckxkyk + Dkxk

2,

J̇ = 0,

�̇ = 0, �19�

where Ak=cos k0 cos �k0, Bk=sin k0 sin �k0, Ck
= �1/2�cos k0 sin �k0, and Dk= �1/2�sin k0 cos �k0.

The basic strategy is, now, to determine the frequency of
the ensuing oscillations from a reduction of Eq. �19� to its
center manifold. We prepare Eq. �19� for the center manifold
reduction by introducing the following change of coordi-
nates:

�
u1

v1

]

uN

vN

 = S�
x1

y1

]

xN

yN

 ,

S = �
cos �1 − sin �1 . . . 0 0

sin �1 cos �1 . . . 0 0

] � ]

0 0 . . . cos �N − sin �N

0 0 . . . sin �N cos �N

 . �20�

The variables �k in the diagonalization matrix S are ob-
tained through the relation tan 2�k=−�k sin k0 cos �k0. Now
direct calculations show that the eigenvalues of the linear
part of Eq. �19� are
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FIG. 6. Comparison between analytical �solid line� and numeri-
cal �dot markers� calculations of the maximum coupling strength
that can yield flux oscillations in an array of three SQUIDs, unidi-
rectionally coupled in a ring configuration. Parameters are xe=0.5,
J=0.5, and �k=0.8.
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�1 = 0,

�−1 = −
2

�1
− 2A1,

�±k = −
1

�k
− 2Ak ±

1

�k

1

cos 2�k
, k = 2, . . . ,N .

Then, when we use the change of coordinates �20�, the first
two sets of equations in Eq. �19� become

�
u̇1

v̇1

]

u̇N

v̇N

 = �
0 0 0 0 . . . 0 0

0 −
2

�1
− 2A1 0 0 . . . 0 0

] � ]

0 0 0 0 . . . �−N 0

0 0 0 0 . . . 0 �N

�
u1

v1

]

uN

vN


+ S�

D1y1
2 + 2C1x1y1 + D1x1

2

2�I0x2 + C1x1
2 + 2D1x1y1 + C1x1

2

]

DNyN
2 + 2CNxNyN + DNxN

2

2�I0x1 + CNxN
2 + 2DNxNyN + CNxN

2
 . �21�

Numerical calculations show that the eigenvalues of Eq.
�21� are either negative or zero, thus all trajectories will ex-
ponentially relax to the center eigenspace u1=0. It follows,
from center manifold theory, that the stability of the equilib-
rium points ��k0 ,k0� near J=Jc can be determined by a one-
parameter family of first-order differential equations de-
scribed by the u1 and � variables. To compute the center
manifold, we first assume the dynamics has already relaxed
to the center eigenspace u1=0 so that u̇2=0 , . . . , u̇N=0 and
v̇1=0 , . . . , v̇N=0. Then we solve the resulting algebraic equa-
tions for ui=hi�u1 ,��, i=2, . . . ,N and v j =hj+N�u1 ,��, j
=1, . . . ,N. Once these algebraic equations have been solved,
the evolution of u1 on the center manifold becomes

u̇1 = �J − Jc�cos �1 −
�

�1�2
�2�20 − 2�xe�sin �1 + �u1

2

+ 2�
�2

�1
u1 + O��J − Jc�3� , �22�

where

�2 = �2/�2�cos �2 sin �1,

�2 = �2/�−2�sin �2 sin �1,

� = cos �1�D1 − C1 sin 2�1� − sin �1�C1 − D1 sin 2�1� ,

� = �1/�2���2 cos �2 sin �1 − �2 cos �2 sin �1� .

Effectively, the transformation �20� and the center mani-
fold reduction allows us to separate the slow dynamics on the
eigenspace u1=0 from the fast dynamics on the space

�v1 ,u2 ,v2 , . . . ,uN ,vN�, which eventually decays to zero.
Moreover, integrating Eq. �22� we get

u1�t� =�Fu

�
−

�2�4

�2 tan��Fu� − �2�4t� −
��2

�
, �23�

where Fu= �J−Jc�cos �1− �� / ��1�2���2�20−2�xe�sin �1. It
follows that the frequency of the oscillations of the coupled-
SQUID system �15� is given by

�u =
1

2�
�Fu� − �2�4. �24�

Observe that Eq. �24� has essentially the same structure as
that of the frequency response for the all-to-all network con-
figuration studied by Acebron et al. �6�. This similarity re-
sults from the fact that the ring dynamics on the center mani-
fold, as is described by Eq. �23�, has the same form as that of
the all-to-all network. However, a significant difference be-
tween these two cases �all-to-all and directed rings� is in the
term F, which now depends only on the phase dynamics of
one single SQUID. Consequently, the frequency response of
our directed-ring configuration is independent of the number
of SQUIDs in the ring. This result is in direct contrast to the
frequency response of the all-to-all network configuration of
Ref. �6�, in which the mean-field-type coupling leads to a
frequency dependence on the number of SQUIDs. Observe
also that when the SQUIDs are decoupled, i.e., when �=0,
then �=0 and the frequency response �u in Eq. �24� reduces
to the frequency response 
 of a single SQUID element
given by Eq. �9�, as expected. Figure 7 shows now a com-
parison of the frequency response of a three-SQUID ring
system obtained numerically from simulations of the model
equations �14� and analytically through Eq. �24�. Both the
analytical frequency response and the computational result
show a characteristic dependence on the coupling strength �
that follows a square-root scaling law. More importantly, the
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FIG. 7. Frequency response of a three-SQUID, unidirectionally,
coupled ring system as a function of coupling strength. Parameters
are xe=0.5 and �k=0.8.
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analytical frequency response is in good agreement, espe-
cially for small values of J−Jc, with numerical computa-
tions. Furthermore, we also note that coupling-induced oscil-
lations only exist in the supercritical regime, i.e., past the
critical coupling strength, regardless of whether N is even or
odd.

D. Effects of noise and of varying the ring size

We now investigate the response of a unidirectionally
coupled N-SQUID ring system to thermal noise through a
Langevin version of the deterministic model equations �15�
as follows:

�̇kj = J +
�− 1� j

�k

���k1 − �k2 − 2�xe − 2��
I0

�k+1
��k+1,1 − �k+1,2 − 2�xe�	

− sin��kj� + �kj�t� + O��2� , �25�

where k=1, . . . ,N, �kj are Gaussian white noise functions of
zero mean, ��kj�t��=0, and uncorrelated, ��mi�t��nj�t���
=2D�ij�mn�t− t��. Since we will be comparing the power
spectrum density �PSD� response of a single SQUID �N
=1� with that of multiple coupled SQUIDs, we set the pa-
rameters so that all the SQUIDs are in their running states,
absent the coupling; the response at the fundamental of the
running frequency will concern us in this section. Figure 8
shows the PSD profile for different ring sizes and for various
values of noise intensity. Observe that in each individual
panel, where noise intensity is constant, the noise floor in the
PSD response curves decreases almost uniformly as the
number of SQUIDs in the ring increases. Also, the PSD dis-
tribution around the fundamental �of the running frequency�
gets more narrowed with increasing N. In other words, the

frequency response of the ring system becomes more con-
centrated or well-defined as N increases. For any fixed value
of N, however, the PSD response decreases as noise intensity
increases. Another important feature, worth noticing, of the
effects of noise is the shift in the fundamental frequency
output of the ring. Careful examination shows that, indeed,
the frequency output decreases as noise intensity increases.
We have observed a similar phenomenon in coupled-core
fluxgate magnetometers, except that in this latter system the
frequency of a ring of flux gates �unidirectionally coupled�
increased as noise intensity increased.

To better understand the relation between the PSD re-
sponse curves and the noise floor therein, we calculate the
signal-to-noise ratio �SNR� �at the fundamental frequency� of
an N-SQUID ring system in response to changes in coupling
strength � and to the number of SQUIDs N, as follows. First,
we collect an ensemble of one hundred signals, containing
the average output of an N-SQUID ring system subject to
additive white Gaussian noise, by numerically integrating
Eq. �25� with a random set of initial conditions. Then we
average the PSD response of the entire ensemble and com-
pute the ratio between the averaged PSD spectrum and the
average noise floor measured around the fundamental fre-
quency given by Eq. �24�. This ratio yields the SNR surface
function shown in Fig. 9. The SNR response for a single
SQUID can also be inferred from the values of the surface
plot at �=0. The plot shows an overall tendency for the SNR
output of the coupled ring to increase with small coupling
strength. More importantly, the increase, which occurs across
different ring sizes, clearly indicates that just a small amount
of coupling can significantly strengthen the signal output,
relative to background noise, of a ring device; outperforming
the output of a single device, in some cases even by a factor
of 100%.

The increase in the SNR output seen in Fig. 9 does not
extend indefinitely. For a larger range of coupling strength
values, the SNR output actually decreases after reaching a
peak. The overall profile of the SNR surface resembles what
was typically seen in the stochastic resonance cases where
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FIG. 8. Average PSD response of a N-SQUID ring system, uni-
directionally coupled, to various values of noise intensity. Param-
eters are J=0.5, xe=0.5, �k=0.8, �=0.01. Observe that in each
individual panel the noise floor decreases as the number of SQUIDs
increases. In all three cases, noise floor rises, however, as the noise
intensity increases.

FIG. 9. Average signal-to-noise-ratio response of a N-SQUID
ring system, unidirectionally coupled, as a multifunction of cou-
pling strength � and of the number of SQUIDs N. Parameters are
J=0.8, xe=0.5, �k=0.8, D=0.5.
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the noise strength is the varying parameter. More impor-
tantly, the SNR plot shows that there is an optimal coupling
strength which produces the greatest SNR. In addition, a
critical observation is the realization that increasing the cou-
pling strength in the ring does not necessarily translate in an
increase in its SNR signal output. In fact, it appears that the
coupling scheme, rather than the coupling strength, dictates
the enhancements in signal output. Consequently, operating
the ring device in a weak-coupling regime would suffice to
exploit the benefits of the ring configuration. Thus careful
tuning of the coupling strength could mitigate the negative
effects of noise, and at the same time, such tuning could
further enhance the sensitivity of a device underpinned by
such a coupled array. Some of these observations had already
been made in our earlier �far simpler� analysis of the re-
sponse of globally coupled dc SQUID rings �31�.

IV. THE CASE OF BIDIRECTIONAL COUPLING

In this section we investigate the dynamics of an array of
N dc SQUID rings, coupled in a similar fashion to the ring of
Sec. III, except that now we consider the rings to be bidirec-
tionally coupled. The flux �k in each individual k SQUID is
then given by

�k = �e + LkIk + MIk+1 + MIk−1,

where k=1, . . . ,N , IN+1= I1. Substituting �k into Eq. �2�
yields the following system of differential equations for the
bidirectionally coupled array:

�k

I0k
�̇kj = Jk + �− 1� j Ik

I0k
− sin��kj� , �26�

�k
Ik

I0k
= �k1 − �k2 − 2�xe − 2���Ik−1 + kk+1� ,

where k=1, . . . ,N mod N, j=1,2, �=M /�0, and �k
=2�LkI0k /�0. Computer simulations of the ring equations
�26� show oscillatory behavior in the flux dynamics similar
to that of the unidirectionally coupled ring. The preferred
pattern of oscillation is still the synchronized pattern except
that the bidirectional coupling scheme appears to have in-
creased the global stability properties of the synchronized
oscillations; typical trajectories now approach the in-phase
oscillations much more rapidly than in the unidirectionally
coupled ring. The two-parameter bifurcation diagram that de-
picts the basin boundary of existence of oscillatory solutions
and of steady states is qualitatively similar to that of the
unidirectional case, see Fig. 2. Assuming the same set of
parameter values, the only difference in the diagrams is that
the onset of oscillations of the bidirectionally coupled ring
�Jc ,xe=0.5� is shifted, horizontally, towards the right. There
is also a maximum coupling strength beyond which the os-
cillations disappear. To derive an analytic expression for that
maximum coupling strength, we employ a similar strategy to
that of the unidirectional coupling case. First we solve for Ik
using an iterative method. The calculations show that the
new ring is still governed by Eq. �14�, except that now the
bidirectional coupling yields a symmetric matrix B,

B = 2���
0 1 0 . . . 0 1

1 0 1 . . . 0 0

� � �
1 0 0 . . . 1 0

 ,

which must be used when solving for Ik through I=C�, see
Eq. �12�. A closed form solution for the matrix C is also
possible but it is too cumbersome to be written out. Instead,
we take advantage of the coupling strength being relatively
small and expand C in powers of � to get

C = �
1

�1
I0 −

1

�1�2
I0

2� 0 ¯ 0 −
1

�1�N
I0

2�

−
1

�1�2
I0

2�
1

�2
I0 −

1

�2�3
I0

2� ¯ 0 0

] � ]

−
1

�1�N
I0

2� 0 0 ¯ −
1

�N−1�N
I0

2�
1

�N
I0

 + O��2� .

Rescaling time by � / I0, the phase dynamics in Eq. �26� can be written as follows:

�̇kj = J +
�− 1� j

�k
��k1 − �k2 − 2�xe − 2��

I0

�k+1
��k+1,1 − �k+1,2

− 2�xe� − 2��
I0

�k−1
��k−1,1 − �k+1,2 − 2�xe�	 − sin��kj�

+ O��2� , �27�

where k=1, . . . ,N mod N and j=1,2. As in the case of the
unidirectionally coupled ring, �max is independent of the ex-
ternal flux. So we set xe=0 for simplicity. And again, at �max,
the phase dynamics �27� must be at an equilibrium, in which

�̇k1= �̇k2=0, �k1=�k+1,1, and �k2=�k+1,2. Substituting in Eq.
�27� and solving for � we obtain
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�max
b =

�

4�
, �28�

where the superscript indicates that the ring is bidirectionally
coupled. Again, we note that Eq. �28� is valid for any arbi-
trary ring size N. Another interesting observation is that the
maximum coupling strength that yields flux oscillations in a
bidirectionally coupled ring is half that of that of the unidi-
rectionally coupled ring.

To calculate the frequency response of the ring system,
we focus our attention on the dynamics of the ring near the
bifurcation point J=Jc and rewrite Eq. �27� in terms of the
difference and sum variables �k= ��k1−�k2� /2 and k= ��k1

+�k2� /2, leading to

�̇k = −
1

�k
�2�k − 2�xe� + 2��

I0

�k�k+1
�2�k+1 − 2�xe�

+ 2��
I0

�k�k−1
�2�k−1 − 2�xe� − cos k sin �k,

̇k = J − cos �k sin k. �29�

Let ��k0 ,k0� denote the fixed point of each individual,
uncoupled, SQUID. Also let xk=�k−�k0, yk=k−k0. A Tay-
lor series of expansion of Eq. �18� about J−Jc, up to third
order, yields

ẋk = − � 2

�k
+ Ak	xk + Bkyk +

�I0

�k�k+1
�2�k−1,0 − 2�xe�

+
�I0

�k�k−1
�2�k−1,0 − 2�xe� +

2�I0

�k�k+1
xk+1 +

2�I0

�k�k−1
xk−1

+ Ckxk
2 + 2Dkxkyk + Ckyk

2,

ẏk = �J − Jc� − Akyk + Bkxk + Dkyk
2 + 2Ckxkyk + Dkxk

2,

�30�

j = 0,

�̇ = 0,

where Ak=cos k0 cos �k0, Bk=sin k0 sin �k0, Ck
= �1/2�cos k0 sin �k0, and Dk= �1/2�sin k0 cos �k0. We then
determine the frequency of the oscillations in the bidirection-
ally ring from a reduction of Eq. �30� to its center manifold.
The procedure is very similar to the one we employ to find
the frequency of oscillations in unidirectionally coupled
rings, and we simply summarize the main results. Direct cal-
culations show that the dynamics of Eq. �30� on its center
manifold is given by

u1�t� =�Fb

�
−

�2�4

�2 tan��Fb� − �2�4t� −
��2

�
, �31�

where the coefficient Fb is now Fb= �J−Jc�cos �1

− �� / ��1�2��2�20−2�xe�+� / ��1�N��2�N0−2�xe��sin �1. It
follows that the frequency of the oscillations of the bidirec-
tionally coupled SQUID ring system �27� is given by

�b =
1

2�
�Fb� − �2�4. �32�

Observe that the dynamics on the center manifold de-
pends now on the phase dynamics of two neighboring
SQUIDs, instead of just one. This result is expected since the
SQUIDs are now bidirectionally coupled. Consequently, the
frequency response of both, unidirectionally and bidirection-
ally coupled rings, is independent of the number of SQUIDs.
On the contrary, the mean-field coupling in the all-to-all net-
work configuration of Acebron et al. �6� leads to a frequency
dependence on the number of SQUIDs. Nevertheless, the
frequency output of all these three different networks scales
as a square-root of the coupling strength.

Figure 10 now illustrates the power spectrum decomposi-
tion of the oscillatory signal output of a bidirectionally
coupled SQUID ring system. The spectral response appears
to be of the same order as in the unidirectionally coupled
rings, see Fig. 8, including the shift in the fundamental fre-
quency ouput. But careful examination shows that the noise
floor in the unidirectional case tends to decrease, with in-
creasing N, more so than in the bidirectionally coupled ring.

To investigate further the effects of noise, we have also
calculated the SNR output �see Fig. 11�, at the fundamental
of the oscillation frequency. The magnitude and profile of the
SNR output are comparable to those of the unidirectional
ring. That is, the SNR output of the bidirectionally coupled
ring also increases with weak coupling until reaching a peak
value at an optimal coupling strength and decreases for
stronger coupling strengths. For both the unidirectionally
coupled and the bidirectionally coupled systems, the SNR
surfaces in Figs. 9 and 11 show a certain rippling feature
along the up slope and the down slope of the SNR profile.
These features are not artifacts from the numerics. Instead,
we believe they are the inherent result of the dynamics of the
coupled systems. We do not attempt to investigate the source
of these ripple effects in this work.
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FIG. 10. Average PSD response of a N-SQUID ring system,
bidirectionally coupled, to various values of noise amplitude. Pa-
rameters are J=0.5, xe=0.5, �k=0.8, �=0.01. Observe that in each
individual panel the noise floor decreases as the number of SQUIDs
increases. In all three cases, noise floor rises, however, as the noise
amplitude increases.
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V. DISCUSSION AND CONCLUSIONS

We have investigated the dynamics of two rings of locally
coupled SQUID sensors, one unidirectionally coupled and
one bidirectionally coupled, and have compared their re-
sponse characteristics to those of a ring with all-to-all mean-
field coupling. A two-parameter bifurcation analysis reveals
that all of these rings exhibit similar regions of existence of
steady-state solutions and of coupling-induced oscillations.
Within the running solution regime, the preferred pattern of
oscillation is a completely synchronized pattern in which
flux oscillations among the SQUIDs are in phase with one
another and the amplitude of the oscillations is also the same.
In all three rings, the frequency response shows a depen-
dence on the coupling strength that follows a square-root
scaling law. In the locally coupled rings, however, the fre-
quency output is independent of the number of SQUIDs in
the ring. In the all-to-all coupled ring, on the contrary, the
mean-field coupling scheme yields a frequency response �6�
that depends on the size of the ring; in addition, the mean-
field description is not expected to hold for small N, in con-
trast to the results of this work. Both rings, unidirectionally
coupled and bidirectionally coupled, show comparable im-
provements in signal output, relative to background noise,
over those of a single device. A critical observation is the

realization that a local coupling scheme can significantly en-
hance the sensitivity of a ring-based device, and the im-
provements can be achieved even with weak coupling
strength.

We now give a perspective for a potential experimental
realization of the SQUID-ring systems considered in this
work. We first observe that the coupling scheme described by
Eqs. �11� acts locally, inductively coupling �unidirectionally�
the circulating current of one SQUID to its nearest neighbor.
Unlike the globally coupled SQUID system studied by Ace-
bron et al. �6�, where the system has a large number of inputs
resulting from the globally coupling terms, here the number
of inputs is one and at most two for the unidirectionally
coupled system and the bidirectionally coupled system, re-
spectively. This small number of inputs to each element
makes the system simpler to implement in experiments. The
experimental realization of a dc-SQUID ring system can be
accomplished by measuring the circulating current of a near-
est neighbor’s element and couple that current �after some
appropriate signal conditioning� to the present SQUID.

We note also that, although the coupling scheme is based
on previous work on coupled-core fluxgate magnetometers,
it is important to clarify and emphasize that the resulting
coupled-SQUID device would be significantly different for
the following reasons. A single-core fluxgate magnetometer
does not produce oscillatory behavior unless a bias signal �of
amplitude sufficient to drive the ferromagnetic core between
its stable steady states� is applied. A single dc SQUID can
oscillate by itself, however, if it is properly tuned past the
critical onset point Jc. Consequently, the dynamics of the
coupled-SQUID system are significantly different, in fact, far
richer than those of a coupled-core fluxgate magnetometer.

We note, in closing, that the results �and procedures� of
this work should be applicable to networks of other excitable
systems that pass through bifurcations to oscillatory solu-
tions; one example is the well-known Fitzhugh-Nagummo
model of excitable cells for which a globally coupled mean-
field treatment �for a large N network� has already been car-
ried out �36�.
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